Proposed mechanism for generation and localization of new cell division sites during the division cycle of Escherichia coli.
نویسندگان
چکیده
The earliest detectable event at future sites of cell division in Escherichia coli is the appearance of paired periseptal annuli that flank the site of formation of the division septum. The development and localization of these structures were followed as the cell progressed through the division cycle. The data suggest that (i) new periseptal annuli are generated from annuli already in position at the midpoint of the newborn cell; (ii) the nascent annuli are then displaced laterally during cell elongation to positions at 1/4 and 3/4 cell length; and (iii) the annuli at 1/4 and 3/4 cell length are retained during division, becoming the midpoint annuli of the newborn cells at the sites of the forthcoming division septum. The results indicate that the sites of future divisions can be identified and committed to the division process prior to the division cycle in which these sites are utilized for septum formation, and they suggest a model in which preexisting sites of cell division generate future division sites by a replication/displacement mechanism.
منابع مشابه
Evaluating a murine model of endometritis using uterine isolates of Escherichia coli from postpartum buffalo
Ascending infection of the uterus with Gram-negative bacteria is responsible for postpartum endometritis in cattle and buffalo and can adversely affect fertility. Development of a laboratory animal model for bovine endometritis would facilitate the understanding of the pathogenesis as it is difficult to conduct controlled experimentation in the native host. In the present study, 30 virgin Swiss...
متن کاملPattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site.
Proper cell division requires an accurate definition of the division plane. In bacteria, this plane is determined by a polymeric ring of the FtsZ protein. The site of Z ring assembly in turn is controlled by the Min system, which suppresses FtsZ polymerization at noncentral membrane sites. The Min proteins in Escherichia coli undergo a highly dynamic localization cycle, during which they oscill...
متن کاملPolar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning.
We show the intracellular localization of the Escherichia coli replication origin (oriC) and chromosome terminus during the cell division cycle by FISH. In newborn cells, oriC is localized at the old-pole-proximal nucleoid border and the terminus at the new-pole-proximal nucleoid border. One copy of replicated oriC migrates rapidly to the opposite nucleoid border. These oriC copies are retained...
متن کاملCell age dependent concentration of Escherichia coli divisome proteins analyzed with ImageJ and ObjectJ
The rod-shaped Gram-negative bacterium Escherichia coli multiplies by elongation followed by binary fission. Longitudinal growth of the cell envelope and synthesis of the new poles are organized by two protein complexes called elongasome and divisome, respectively. We have analyzed the spatio-temporal localization patterns of many of these morphogenetic proteins by immunolabeling the wild type ...
متن کاملCell cycle-specific replication of Escherichia coli minichromosomes.
The timing of Escherichia coli minichromosome replication in the cell division cycle was examined using an improved procedure for studying plasmid replication frequency. Cultures growing exponentially in glucose/Casamino acids minimal medium were pulse-labeled with [3H]thymidine, and the radioactivity incorporated into plasmid DNA in cells of different ages was analyzed. At the end of the label...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 84 20 شماره
صفحات -
تاریخ انتشار 1987